IEEE Transactions on Computational Imaging

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Superpixel provides local pixel coherence and respects object boundary, which is beneficial to stereo matching. Recently, superpixel cues are introduced into deep stereo networks. These methods develop a superpixel-based sampling scheme to downsample input color images and upsample output disparity maps. However, in this way, the image details are inevitably lost in the downsampling and the upsampling process introduces errors in the final disparity as well. Besides, this mechanism further limits the possibility of utilizing larger and multi-scale superpixels, which are important to alleviate the matching ambiguity.

We introduce an efficient synthetic electrode selection strategy for use in Adaptive Electrical Capacitance Volume Tomography (AECVT). The proposed strategy is based on the Adaptive Relevance Vector Machine (ARVM) method and allows to successively obtain synthetic electrode configurations that yield the most decrease in the image reconstruction uncertainty for the spatial distribution of the permittivity in the region of interest. 

In this paper, we explore the spatiospectral image super-resolution (SSSR) task, i.e., joint spatial and spectral super-resolution, which aims to generate a high spatial resolution hyperspectral image (HR-HSI) from a low spatial resolution multispectral image (LR-MSI). To tackle such a severely ill-posed problem, one straightforward but inefficient way is to sequentially perform a single image super-resolution (SISR) network followed by a spectral super-resolution (SSR) network in a two-stage manner or reverse order.

Conventional digital cameras typically accumulate all the photons within an exposure period to form a snapshot image. It requires the scene to be quite still during the imaging time, otherwise it would result in blurry image for the moving objects. Recently, a retina-inspired spike camera has been proposed and shown great potential for recording high-speed motion scenes. Instead of capturing the visual scene by a single snapshot, the spike camera records the dynamic light intensity variation continuously.

In this work, a new nonlinear framework is presented for superior reconstructions in ultrasound-modulated optical tomography. The framework is based on minimizing a functional comprising of least squares data fitting term along with additional sparsity priors that promote high contrast, subject to the photon-propagation diffusion equation. The resulting optimization problem is solved using a sequential quadratic Hamiltonian scheme, based on the Pontryagin’s maximum principle, that does not involve semi-smooth calculus and is easy to implement.

In this paper, we propose a new design for single sensor compressive HDR light field cameras, combining multi-ISO photography with coded mask acquisition, placed in a compressive sensing framework. The proposed camera model is based on a main lens, a multi-ISO sensor and a coded mask located in the optical path between the main lens and the sensor that projects the coded spatio-angular information of the light field onto the 2D sensor. The model encompasses different acquisition scenarios with different ISO patterns and gains.

We propose Coordinate-based Internal Learning (CoIL) as a new deep-learning (DL) methodology for continuous representation of measurements. Unlike traditional DL methods that learn a mapping from the measurements to the desired image, CoIL trains a multilayer perceptron (MLP) to encode the complete measurement field by mapping the coordinates of the measurements to their responses. CoIL is a self-supervised method that requires no training examples besides the measurements of the test object itself. 

Tomography has been widely used in many fields. The theoretical basis of tomography is the Radon transform, which is the line integral along a radial line oriented at a specific angle. In practice, the detector that collects the projection has a certain width, which does not coincide with the line integral. Therefore, the resolution of the reconstructed image will be reduced. In order to overcome the effect of the detector width on the reconstruction quality, some reconstruction methods have taken the influence of the detector width into account and have achieved high reconstruction quality, such as the distance-driven model (DDM) and the area integral model (AIM). 

Recent efforts on solving inverse problems in imaging via deep neural networks use architectures inspired by a fixed number of iterations of an optimization method. The number of iterations is typically quite small due to difficulties in training networks corresponding to more iterations; the resulting solvers cannot be run for more iterations at test time without incurring significant errors.

Given a spectral library, sparse unmixing aims to estimate the fractional proportions in each pixel of a hyperspectral image scene. However, the ever-growing dimensionality of spectral dictionaries strongly limits the performance of sparse unmixing algorithms. In this study, we propose a novel dictionary pruning (DP) approach to improve the performance of sparse unmixing algorithms, making them more accurate and time-efficient.

Pages

SPS on Twitter

  • Celebrate International Women's Day with SPS! This Tuesday, 8 March, join Dr. Neeli Prasad for "Unlocking the Poten… https://t.co/GDQIgjSpLs
  • Check out the SPS Education Short Courses, new at ! Earn PDH and CEU certificates by attending either in… https://t.co/1uYFNvltg7
  • We're partnering with the IEEE Humanitarian Activities on Wednesday, 2 March to bring you a new webinar, "Increasin… https://t.co/JzhaBl17UY
  • The DEGAS Webinar Series continues this Thursday, 3 March when Dr. Steven Smith present "Causal Inference on Networ… https://t.co/10kppomXdl
  • In the February issue of the Inside Signal Processing Newsletter, we talk to Dr. Oriol Vinyals, who discusses his j… https://t.co/XLQ7tpEq0A

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar